摘要
正确预测瓦斯涌出量对于煤矿安全生产有重要的现实意义,但是,工作面瓦斯涌出规律复杂,瓦斯涌出量各影响因素之间存在多重共线性,严重影响了预测的准确性。为研究回采工作面瓦斯涌出量与其多个影响因素之间的关系和特点,消除各因素之间的多重共线性,避免瓦斯涌出量预测出现“维数灾难”以及发生函数过拟合等问题,采用LASSO惩罚回归预测模型进行仿真预测,在原始特征空间的基础上,通过LARS算法实现降维,剔除无关和冗余的特征,最终筛选出一个包含煤层埋藏深度、煤层厚度、煤层瓦斯含量、煤层挥发分产率、风量和煤层间距等6个高影响因素在内的最优特征子集,并使用交叉验证法将数据集分成10份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验。最终,选取最高识别率的测试集参数建立预测模型,对煤矿现场数据进行预测,并与传统的主成分分析法预测结果进行了比较。研究结果表明:应用该模型预测回采工作面瓦斯涌出量,能够较好的保存原始数据集的特征意义,预测平均相对误差为6.52%,平均相对变动值为0.006,均方根误差为3.20,在预测精度和泛化能力方面,均明显优于传统的主成分分析回归模型,能够为井下瓦斯防治提供理论参考,对其他工程领域高维小样本数据预测问题的解决具有借鉴意义。
-
单位电子信息工程学院; 山东科技大学