针对贝叶斯网络构建时参数与结构难以自适应调整,提出基于Netica的自学习贝叶斯网络的构建方法。首先根据Netica要求处理样本数据集,然后运用Netica基础函数开发结构学习模块和参数学习模块,进而能够构建出自动学习样本数据集的贝叶斯网络。同时,开发了概率推理模块和证据敏感性分析模块以评估所建网络的有效性。以国家电网的短路故障样本数据为例建立其自学习贝叶斯网络,实验构建的自学习贝叶斯网络能够实现不确定性推理,表明所提方法是贝叶斯网络功能实现的一个新途径。