QGA-BP神经网络在农业信贷风险评估中的应用

作者:郜佳蕾; 吴迪; 郜佳慧
来源:台州学院学报, 2022, 44(03): 6-47.
DOI:10.13853/j.cnki.issn.1672-3708.2022.03.002

摘要

为了提高风险评估的准确度和效率,有效降低农业信贷风险,提出一种基于优化反向传播(Back-Propagation,BP)神经网络的风险评估方法。首先,该方法利用量子遗传算法(Quantum Genetic Algorithm,QGA)调整和确定BP神经网络的初始权重和阈值,实现了BP神经网络模型参数设置优化。然后,将QGA-BP神经网络模型应用于农业信贷风险评估中,并基于案例分析法进行验证。最后,通过对比QGA-BP神经网络与GA-BP神经网络的性能验证所提方法的有效性。结果表明:QGA-BP神经网络可以加快神经网络的收敛速度,改善BP神经网络容易陷入局部最小值的缺点。QGA-BP神经网络模型在农业供应链金融信用风险预测中表现良好,其预测精度和预测速度都有所提高。

全文