基于循环神经网络的煤层气井产气量预测方法研究

作者:董维强; 孟召平*; 沈振; 宗志敏; 陈涛
来源:煤炭科学技术, 2021, 49(09): 176-183.
DOI:10.13199/j.cnki.cst.2021.09.025

摘要

煤层气井产气量是衡量一口煤层气井产气能力和工程开发效果的重要指标,准确预测日产气量是保证煤层气高效生产的一个关键问题。以沁水盆地南部郑庄区块3号煤层为研究对象,选取煤层气井排采动态参数,如井底流压、液柱高度、套压、日产水量和冲次作为自变量,分析了日产气量与这些排采参数之间的相关性,建立了基于循环神经网络的煤层气井产气量预测模型与方法。研究结果表明,煤层气井日产气量与冲次呈正相关性,日产气量与井底流压、套压、液柱高度和日产水量呈负相关性。基于深度学习随机森林算法中的特征重要性分析,研究了排采动态参数与日产气量之间的非线性关系以及预测模型中对日产气量的贡献率,得到了排采参数对日产气量影响的重要性排序表现为:井底流压>液柱高度>套压>日产水量>冲次。在此基础上,基于循环神经网络改进的长短时记忆神经网络预测模型,将Z4-026井排采数据代入模型计算,预测了煤层气井未来60 d产气量情况,并将预测结果与传统的支持向量机回归模型、随机森林回归模型以及BP神经网络模型对比,发现改进的长短时记忆神经网络预测模型,拟合效果相对较好,实际日产气量与预测日产气量之间的误差小于5%。在郑庄区块5口煤层气井的产气量预测分析中,相对误差小于10%。因此该方法将为煤层气井产气量预测和制定合理的排采制度提供了有效途径。

全文