摘要

滚动轴承是常见机械设备的重要部件,其是否能正常运作,直接关联到设备生产的安全性以及效率的高低,因此,能够及时、准确地识别滚动轴承工作状态,显得至关重要。提出了一种阈值法确定变分模态分解中分解个数,该方法使得分解个数的确定更科学合理,同时提出基于变分模态分解和随机森林相结合的滚动轴承故障诊断方法,该方法利用变分模态分解方法将滚动轴承振动信号分解成若干个固有模态函数,轴承发生不同故障时,不同的固有模态函数内的统计特征和频带能量会发生变化,从不同的固有模态函数中计算出其对应的均值、变异系数与能量熵等特征值,最后分别采用支持向量机和随机森林算法实现判断滚动轴承信号类型。结果表明,利用变分模态分解和随机森林相结合算法具有更高的识别精度,可以有效识别滚动轴承的故障类型。