提出一种基于分类一致性的规则获取算法.它是一种例化方向的方法,即从空集开始,以条件属性子集的分类一致性来度量属性的重要性,逐步加入重要的属性,当选择的属性子集能够正确分类时,则获取到决策规则.算法中设计了一个规则约简过程,用来简化所获得的规则,增强规则的泛化能力.实验结果表明,所提出的算法获得的规则更为简洁和高效.