一种基于深度强化学习的D2D网络中的缓存策略方法

作者:李立欣; 徐洋; 李旭; 高昂; 梁微; 殷家应
来源:2018-11-02, 中国, ZL201811300987.3.

摘要

本发明公开了一种基于深度强化学习的D2D网络缓存策略方法,以缓存使能的D2D网络中的每个用户的历史位置信息为输入数据,通过回声状态网络算法,得出每个用户下一时刻的位置信息;根据每个用户下一时刻的位置信息,结合每个用户的当前时刻的上下文信息,通过回声状态网络算法,得出每个用户下一时刻的内容请求信息;将内容请求信息缓存在对应用户的缓存空间中;通过深度强化学习算法,以发射内容请求信息用户的发射功率最小和接收内容请求信息用户的延时最短为目标,得出缓存使能的D2D网络中各用户之间传递内容请求信息的最优策略;本发明解决了缓存使能的D2D网络中缓存内容放置命中率低以及缓存传递过程中耗能大延迟长的问题。