为了能够高效精准地对煤矿带式输送机上的煤量进行分级,提出了一种基于变分自编码器(VAE)的输送带煤量分级算法。首先为了解决真实场景图像往往存在许多噪声信息的问题,利用VAE对图像进行重构处理,使图像更加光滑以减少噪声信息对后续分级的干扰。然后为了提升输送带煤量的分级精度,利用卷积神经网络(CNN)对重构后的图像进行分级预测。实验结果表明,相对于对比方法,此该算法在各评价指标上均有提升,同时重构图像能够保留原始图像的关键信息。