摘要
特征选择是信用评级建模的重要环节,合理的特征选择能够简化模型结构和提升分类效果.借鉴w-L1SVM模型的加权思想,借助Logistic-Group-Lasso模型筛选组变量的优势,提出处理信用评级特征选择问题的加权Logistic-GroupLasso(w-LGL)模型,该模型在选择变量时更加关注误判成本较高的违约客户,且能够实现分类变量的整组处理.与常规特征选择方法相比,w-LGL模型在数值模拟与实证研究中的分类效果更好.
-
单位国网能源研究院有限公司; 中国人民大学