摘要

针对学术评价中多属性评价方法和组合评价方法众多,从而导致学术评价结果众多,评价公信力下降问题,优选多属性评价方法成为解决问题的较好途径。线性多属性评价相对成熟,非线性多属性评价的选取是首要问题,基于BP人工神经网络,以非线性多属性评价值作为输出,评价指标作为输入,通过训练人工神经网络,可以得到评价指标权重,进而和评价值评价指标的相关系数进行比较,通过检验非线性多属性评价方法的逻辑一致性来进行评价方法的选取。以JCR2017数学期刊为例,分别采用主成分分析、因子分析、TOPSIS进行评价,然后再基于BP人工神经网络模型进行选取。研究结果表明:非线性多属性评价方法的选择问题是学术评价的基础问题;BP人工神经网络可以用来辅助进行非线性评价方法的选取;采用BP人工神经网络辅助选取非线性评价方法必须具备一定的适用条件。