时间域航空电磁系统采样密集,数据量大,所以在该领域较为实用的数据处理方法主要为一维反演和电阻率成像法。笔者从成像问题出发,建立了庞大的数据-模型训练集,研究并分析了不同结构的神经网络的成像精度。通过对比分析测试结果,获得了在一定条件下适用于航空电磁成像的最优网络模型结构,包含其神经元个数和层数等信息。本文采用早停法训练神经网络,压制数据中噪声对成像结果的影响。