摘要
利用BP(Back propagation)神经网络处理多参数问题具有的非线性映射及泛化能力,构建了具有3层隐藏层的神经网络,对含纤维褶皱复合材料层合板的压缩强度进行预测。基于LaRC失效准则建立三维损伤模型,对含褶皱复合材料的压缩失效进行数值分析。将数值分析结果作为数据样本对神经网络进行训练。采用黄金分割法快速确定最佳隐藏层神经元数量区间范围,并通过分析对比不同数量神经元模型的强度预测结果及评价指标,确定具有高预测精度的隐藏层神经元数量。结果表明,所构建的神经网络预测最大褶皱角为5.6°、9.9°和11.4°的3种层合板失效强度误差分别为3.4%、4.6%和-0.01%。本文所发展的基于BP神经网络对复合材料强度进行预测的方法,为工程应用中复合材料强度评估提供了一种有效的途径。
-
单位暨南大学; 建筑工程学院