摘要
针对传统无线传感器网络(Wireless Sensor Network, WSN)对运动目标的定位和跟踪容易产生明显误差的问题,提出利用改进FOA-GRNN和迭代Cubature卡尔曼滤波的实时目标跟踪方法。基于改进FOA-GRNN法,利用从锚点接收到的运动目标的模拟(RSSI)值和相应的实际目标二维位置对GRNN进行训练,从而获得单个目标在二维运动时的准确初始位置;利用迭代Cubature卡尔曼滤波法对实时目标进行精准定位和测距,获得实时目标的准确定位和跟踪信息;将改进的FOA-GRNN法和迭代Cubature卡尔曼滤波法相结合用于WSN中实时目标跟踪和定位,在提高初始位置精度的同时,还提高了实时目标定位和跟踪信息的准确度。实验结果表明,相比其他几种较新的方法,该方法改善了WSN中实时目标的跟踪性能,降低了误差,提高了跟踪精度。
- 单位