摘要

随着现代化城市与工业生产中电力需求的不断提高,电力物联网(Power Internet of Things,PIo T)作为一种能够显著提高电力系统效率的解决方案受到了广泛关注。为有效解决接入问题,现有的电力设备往往已配备内置轻量级人工智能的5G模组。然而,受制于模组有限的计算能力和通信能力,设备产生的海量数据难以实时处理和分析。基于该问题,本文主要研究电力物联网系统中的任务卸载问题,通过联合优化卸载决策和边缘服务器的计算资源分配,从而降低时延与能耗的加权和。此外本文提出一种基于深度强化学习的任务卸载算法,首先任务在边缘服务器的处理过程建模为队列,其次基于凸优化理论对本地计算资源分配进行优化,最后采用深度Q学习算法优化任务卸载决策。实验结果表明,本文提出的方法能够有效降低系统时延与能耗的加权和。

  • 单位
    通信与信息工程学院; 国网电力科学研究院有限公司; 南京邮电大学