摘要

为了解决电力设备故障识别中存在识别精度低、识别耗时长等问题,提出构建基于深度学习的电力设备图像识别模型。利用飞行设备搭载采集系统获取电力设备样本图像,采用加权平均法将RGB彩色图像转换为灰度图像;通过均值滤波法对电力设备图像进行降噪,以及采用二次泰勒级数卷积对电力设备图像边缘进行自适应增强,完成电力设备图像的预处理;在此基础上,采用权重融合的相似性测度对电力设备图像特征进行融合,引入卷积神经网络构建电力设备图像识别模型。实验结果表明:采用所提模型识别电力设备图像的精度最高可达99%,且识别耗时始终低于5s。

  • 单位
    广州供电局