摘要
传统的合成孔径雷达图像去噪算法在细节保存能力和运行时间上存在局限性,而深度学习方法具有独特优势。通过对国内外有关文献的归纳和总结,分析了基于深度学习的合成孔径雷达图像去噪算法的理论基础和优缺点,阐述了网络模型的具体实现细节。从监督模型和自监督模型方面对合成孔径雷达去噪算法进行分类。叙述了去噪算法的训练及测试过程,包括训练及测试数据的、训练过程中常用的损失函数和分析、模拟及具体测试数据评价指标;展望了合成孔径雷达图像散斑抑制的研究方向。
-
单位中国科学院自动化研究所; 河北大学; 模式识别国家重点实验室; 电子信息工程学院