摘要
为实现田间条件下快速、准确识别棉花与杂草,该文以自然光照下田间棉花与杂草为研究对象,采用垂直向下拍摄的方式获取棉花杂草视频,按1帧/s的速率从视频中提取图像,在人工去除冗余度过多的图片后,建立1 000幅图片的数据集。对比了Faster R-CNN和YOLOv3 2种典型卷积神经网络,将Faster R-CNN卷积神经网络的深度学习模型引入到棉花杂草图像识别中,并提出一种结构优化的方法,使之适用于复杂背景下的棉田杂草识别。该文选用残差卷积网络提取图像特征,Max-pooling为下采样方法,RPN网络中引入特征金字塔网络生成目标候选框,对卷积神经网络结构进行优化。在使用700幅图片进行训练后,通过200幅田间棉花杂草图像识别测试,结果表明:该方法的平均目标识别准确率达95.5%,识别单幅图像的平均耗时为1.51s,采用GPU硬件加速后识别单幅图像的平均耗时缩短为0.09s。优化后的Faster R-CNN卷积神经网络相对于YOLOv3平均正确率MAP高0.3以上。特别是对于小目标对象,其平均正确率之差接近0.6。所提方法对复杂背景下棉花杂草有较好的检测效果,可为精确除草提供参考。
- 单位