摘要

针对当前数学模型无法描述舰船上层建筑振动特性的变化规律,为了提高舰船上层建筑振动特性预测精度,设计一种蚁群优化算法和神经网络相结合的舰船上层建筑振动特性预测数学模型。首先对当前各种舰船上层建筑振动特性预测数学模型的优缺点进行阐述,然后采用神经网络对舰船上层建筑振动特性变化规律进行拟合,并采用蚁群优化算法确定神经网络相关参数,最后进行舰船上层建筑振动特性预测数学模型的性能测试。结果表明,蚁群优化算法和神经网络相结合的舰船上层建筑振动特性预测精度高,不仅预测误差远低于当前其他舰船上层建筑振动特性预测数学模型,而且预测效率也得到了改善,为解决舰船上层建筑振动特性预测问题提供了一种新的研究方法。

  • 单位
    内江职业技术学院