摘要
为了解决协同过滤推荐所面对的数据稀疏问题,本文提出一个融合知识图谱与循环神经网络的推荐模型.传统的方法是将知识图谱特征学习模块与推荐模块独立开来,这样学习到的实体特征对推荐的帮助不大.本文提出的模型将知识图谱特征学习自动融合到了推荐系统,首先依据"偏好扩散"思想,利用知识图谱中实体的连接获取用户扩散偏好集,其次将用户扩散偏好集作为循环神经网络的输入,融合基于物品的注意力机制进行用户偏好特征表示学习,最后基于用户偏好特征预测用户喜欢某个物品的概率.该模型丰富了用户的偏好特征,学习出对推荐系统更有用的实体特征表示,增强了推荐效果.本文模型在电影和图书推荐上进行了实验,结果表明该模型在点击率预测、Top-k列表推荐等方面比其他相关算法有更好的表现.
-
单位中山大学; 安徽电子信息职业技术学院