摘要
针对目前课堂环境下的多人脸检测研究不够深入,特别在拍摄角度变化等多个因素影响下人脸识别率较低的问题,提出了真实课堂环境下基于全卷积头部检测器(FCHD)人脸检测的改进算法。首先,针对课堂环境下多人脸数据集的不足构建了两类课堂数据集,通过10人以下、11~20人、21~30人、31~40人以及41人以上不同的数据进行分析;然后,对比评估了传统的人脸检测算法以及基于深度学习的算法;最后,提出基于FCHD算法进行锚点设计的改进,针对课堂多人脸数据集的特点,通过不同锚点的设计以及神经网络的微调提升多人脸检测的准确率。实验结果表明,所提算法对于10人以下的人脸检测平均准确率能达到90%,能够较好地解决多人脸识别领域中存在的人脸偏移、遮挡、角度等问题。
- 单位