基于知识图谱、TF-IDF和BERT模型的冬奥知识问答系统

作者:罗玲; 李硕凯; 何清; 杨骋骐; 王宇洋恒; 陈天宇
来源:智能系统学报, 2021, 16(04): 819-826.
DOI:10.11992/tis.202105047

摘要

传统信息检索技术已经不能满足人们对信息获取效率的要求,智能问答系统应运而生,并成为自然语言处理领域一个非常重要的研究热点。本文针对中文的冬奥问答领域,提出了基于知识图谱、词频-逆文本频率指数(term frequency-inverse document frequency,TF-IDF)和自注意力机制的双向编码表示(bidirectional encoder representation from transformers,BERT)的3种冬奥问答系统模型。本文首次构建了冬奥问答数据集,并将上述3种方法集成在一起,应用于冬奥问答领域,用户可以使用本系统来快速准确地获取冬奥内容相关的问答知识。进一步,对3种模型的效果进行了测评,测量了3种模型各自的回答可接受率。实验结果显示BERT模型的整体效果略优于知识图谱和TDIDF模型,BERT模型对3类问题的回答可接受率都超过了96%,知识图谱和TDIDF模型对于复合统计问答对的回答效果不如BERT模型。

全文