摘要
基坑开挖变形具有非线性特性,在脊波神经网络的基础上,采用粗集理论算法优化初始权值和阈值,建立了基于粗集理论算法-脊波神经网络的深基坑变形预测模型,应用该模型对西南地区某市火车站综合交通换乘中心南广场的基坑开挖过程进行了变形预测。结果表明:粗集理论算法能够对脊波神经网络进行优化,提高了脊波神经网络基坑变形预测结果的收敛速度和泛化能力;脊波神经网络能逼近基坑变形的非线性部分,避免了模型误差影响基坑开挖变形预测精度,提高了系统整体抗干扰性能。模型的预测值与实测值之间的误差在5%以内,满足实际工程的要求。
-
单位西南交通大学希望学院