基于软参数共享的事件联合抽取方法

作者:冯兴杰; 赵新阳; 冯小荣*
来源:计算机应用研究, 2023, 40(01): 91-96.
DOI:10.19734/j.issn.1001-3695.2022.06.0252

摘要

事件抽取是项重要的信息抽取任务,旨在抽取文本中的事件信息。目前基于多任务学习的事件联合抽取方法大多基于硬参数共享,此类方法往往会导致跷跷板现象的出现,即一项任务的性能往往通过损害另一项任务的性能来提高。为了解决这一问题,提出了一种基于软参数共享的事件联合抽取方法,该方法明确地分离了共享参数和任务特定参数,并通过双层门控网络增强模型提取和筛选语义知识的能力,使模型能同时为两个任务学习到合适的特征表示,实现了更高效的信息共享和联合表示学习。在DuEE1.0公共数据集上进行了实验,使用准确率、召回率、F1值作为评价指标,并通过对比实验和消融实验验证了方法的有效性。对比基于硬参数共享的联合抽取模型事件识别任务F1值提高了2.0%,论元角色分类任务F1值提高了0.9%,有效地缓解了跷跷板现象的出现,验证了方法的有效性。

全文