摘要
基于经验模态分解(EMD)、改进的极限学习机(MELM)以及马尔科夫链,提出了一种新的混合模型。由于混凝土坝的变形可看成静水压力、环境温度和时间效应而产生的变形,前两者体现总变形中的周期性分量,后者体现为总变形中的趋势性分量,所以在数据预处理阶段,利用经验模态分解技术将坝体总位移序列分解为趋势分量位移和周期分量位移,选择多项式函数预测趋势分量位移,提出了一种改进的极限学习机,即均值学习机集成(MELM),采用MELM模型对周期分量进行预测。再使用马尔科夫链修正模型对两个模型的拟合残差进行修正预测,叠加各预测值得到最终预测值。在某混凝土坝的应用表明,该组合模型的拟合及预测精度明显优于传统模型,具有操作简便、预测精度高、训练速度快等优点。
-
单位南京市水利规划设计院股份有限公司; 河海大学