摘要
针对现有二轮机动车乘员头盔检测算法在目标密集分布、随机遮挡等情况下效果较差且难以在边缘设备上应用的问题,制作了具有针对性的数据集,对比现有模型后,以YOLOv7为参考提出一种复杂交通环境下二轮机动车乘员头盔检测算法.首先,采用EfficientNet-B3作为主干网络,可提高特征提取能力且更为轻量化;其次,将增大感受野模块(RFB)引入特征融合结构中,以增大模型感受野,提升小目标头盔检测能力;最后,在检测头嵌入SimAM机制,在不增加参数的前提下提高算法精度.结果表明:相较于YOLOv7,文中算法的准确率、召回率和平均准确率分别提高了2.84%,2.26%和3.26%,参数量和运算量分别为YOLOv7的33.1%,23.5%,可实现当前主流模型算法的最佳检测性能和效率;在NVIDIA Jetson Nano开发板上的处理速度达到47.58 F·s-1,可满足边缘设备部署需求.
- 单位