序列数据处理在天体光谱分类领域是一项非常重要的任务,但是传统的处理方式成本高、效率低。通过构造一种以focal loss作为损失函数的多分支一维卷积神经网络对LAMOST部分序列数据进行了分类,并采用MarcoF1分数作为评价指标。结果表明该模型取得了理想的实验效果,并且focal loss损失函数(其在不平衡数据分类任务中对困难样本增加权重)相比传统的交叉熵损失函数也有更好的预测精度。