摘要

目的立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权重信息与引导滤波的正则化项相结合,并在多分辨率尺度的框架下进行代价聚合。所得结果经过视差计算,得到初始视差图,再通过左右一致性检测、加权中值滤波等视差优化步骤获得最终的视差图。结果在Middlebury立体匹配平台上进行实验,结果表明,融合边缘权重信息对边缘处像素点的代价量进行了更加有效地区分,能够提升算法在各区域的匹配精度。其中,未加入视差优化步骤的21组扩展图像对的平均误匹配率较改进前减少3.48%,峰值信噪比提升3.57 d B,在标准4幅图中venus上经过视差优化后非遮挡区域的误匹配率仅为0.18%。结论融合边缘保持的多尺度立体匹配算法有效提升了图像在边缘纹理处的匹配精度,进一步降低了非遮挡区域与视差不连续区域的误匹配率。