中文句子对相似性计算任务旨在利用模型对两个句子的相似性进行判别,在文本挖掘领域有广泛的应用。考虑到现有机器学习方法不能同时兼顾句子对的深层语义特征和显式特征的问题,该文提出融合深层语义和显式特征的中文句子对相似性判别方法。采用BERT和全连接网络来获取深层语义向量,再拼接显式特征构造新的特征向量,最后通过分类器完成句子对的相似性判别。实验结果表明,该方法在3个公开的中文句子对相似性评测数据集上的性能均优于基线方法。