摘要
针对变频环境下异步电机故障时定子电流信号非平稳的问题,提出一种互补集合经验模态分解(CEEMD)与卷积神经网络(CNN)结合的异步电机故障诊断方法。首先通过ANSYS对变频环境下电机建模获得仿真电流数据,利用CEEMD将电机定子电流信号分解为一系列本征模态函数(IMF);其次通过计算排列熵和样本熵,选取复杂程度小的IMF分量并计算其平均值来提取出故障特征;接着将特征数据集输入卷积神经网络(CNN)进行训练和验证;最后搭建实验平台收集电流信号,对信号进行滤波和CEEMD分解重构,放入CNN训练好的模型进行测试,识别率达95.56%。证明了该方法是一种可行的异步电机故障诊断方法,可实现对异步电机正常、转子断条和气隙偏心状态的准确识别。
- 单位