摘要
为了有效地处理复杂真实现象中的不规则数据,提出一种利用有理分形插值进行分形曲线建模的方法。首先,基于传统的具有形状参数的有理样条,构造了一类具有函数尺度因子的有理迭代函数系统,并定义了有理分形插值曲线。然后,研究了有理分形曲线的一些重要性质,包括光滑性、稳定性以及收敛性。最后,估计了有理分形曲线计盒维数的上下界。提出的可变参数的有理分形插值推广了传统的单变量有理样条,适用于拟合不规则数据或逼近具有连续但不规则导数的函数,具有更好的灵活性和多样性。数值实例和曲线建模表明,该方法不仅在视觉效果上明显优于Bézier插值,B样条插值以及基于多项式的分形插值方法,而且在均方根误差的数值对比中也具有显著优势。
-
单位山东大学; 数学学院; 山东财经大学