摘要

粒计算是知识表示和数据挖掘的一个重要方法.从粒计算来看,一个粒是由多个比较小的颗粒组成的更大的一个单元.在许多实际应用中,由于不同标记尺度对数据集进行分割会得到不同层次的粒度,许多人在用粒计算解决问题时自然而然地考虑不同层次的粒度问题.这就促使思考如何选择一个合适的粒度层次来解决问题.围绕不完备多粒度决策系统,研究了基于局部最优粒度的规则提取方法.1)介绍了不完备多粒度决策系统的概念;2)在协调的不完备多粒度决策系统中定义了最优粒度和局部最优粒度、介绍了基于局部最优粒度的属性约简和规则提取方法,在不协调的不完备多粒度决策系统中引入了广义决策、定义了广义最优粒度和广义局部最优粒度,并给出了基于广义局部最优粒度的属性约简和规则提取方法;3)给出了在公开的数据集上的实验结果.