摘要

自然数是由素数生成的乘法半群,从推广素数乘积的非交换性得到一类具有算术性质的非交换半群,自然数上的M?bius函数和Riemannζ-函数等得到了自然推广.经典的Thompson群的生成半群等例子都是我们研究的特殊情形,它们上面的ζ-函数和经典的ζ-函数有类似的性质,但也有本质差别.本文证明类似的素数定理对许多非交换算术半群成立.而Thompson半群的ζ-函数至少有两个极点,这种现象反映了非交换半群中因子分解的复杂性.