主要研究非线性抛物型积分微分方程的协调Galerkin有限元方法Crank-Nicolson(CN)全离散格式。通过对非线性项的精细估计,采用插值与投影相结合的估计技巧,导出了L∞(H1)模意义下具有O(h2+τ2)阶的超逼近性质。进一步利用插值后处理技术得到了整体超收敛结果,弥补了以往文献的不足。同时,通过数值例子验证了理论分析的正确性和方法的高效性。