摘要
针对现有SO2浓度预测方法中存在的污染物来源和影响因素认识不统一、小样本数据敏感、易于陷入局部最优等问题,文中提出了基于模糊时序和支持向量机的高速公路SO2浓度预测算法,为搭建高速公路环境健康监测系统提供了可靠的理论支持.该方法依据SO2浓度的季节变动规律,以季节作为时间序列,以24h为粒化窗宽,通过高斯核函数提取原始样本数据的特征值,输入支持向量机训练模型,并利用k重交叉验证法结合网格划分优化模型参数.文中应用该方法建立了SO2浓度预测模型,并以2014年4月至2015年3月山西省太旧高速公路某监测点SO2小时浓度监测值为样本数据,在MATLAB平台下应用LIBSVM工具实现了计算过程.结果表明,基于模糊时序和支持向量机的高速公路SO2浓度预测算法不受机理性理论研究的限制,支持小样本学习,非线性拟合效果好,泛化能力强.
-
单位山西省交通科学研究院