摘要
目的建立差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型,对上海市2型糖尿病(type 2 diabetes mellitus,T2DM)患者肺结核(pulmonary tuberculosis,PTB)的发病率进行预测,在此基础上建立ARIMA支持向量机(support vector machines,SVM)组合模型,修正单一模型的预测结果。方法以上海市T2DM患者管理库及结核病监测系统数据为基础,获得2010—2015年确诊的上海市户籍T2DM患者的基线信息及随访期间TB的发病情况。以2010—2014年TB月发病数据为基础,建立ARIMA模型,并应用SVM对ARIMA模型残差进行非线性建模,建立组合模型。以2015年月发病率数据对模型进行验证。采用均方根误差(root mean square error,RMSE)和平均绝对误差百分比(mean absolute percentage error,MAPE)评估和比较模型的准确性。结果建立的ARIMA模型为ARIMA(3,1,0)(1,1,0)12。ARIMA模型和ARIMA-SVM组合模型预测2015年上海市T2DM患者PTB月发病率的MAPE分别为87.0%和54.6%,RMSE分别为2.96和2.26,组合模型数值更低,预测更准确。结论 ARIMA-SVM组合模型对T2DM患者PTB发病的预测精度高于单一ARIMA模型。
-
单位上海市疾病预防控制中心