异常检测是数据挖掘中的一个重要研究方向,当前大多数基于密度的异常检测算法常常基于样本分布假设,敏感于近邻参数k并且缺乏对集体异常点的检测能力。针对这些问题,提出了一种基于核密度估计的核密度波动算法。定义了可以综合评估数据点邻域内和邻域外核密度值波动的核密度波动因子,将其作为检测指标,并制定检测规则来识别异常点,这一指标可以综合考虑数据点的局部特征和全局特征,而且有助于发现集体异常。数据集上的实验结果表明,所提算法可以取得更好的检测结果,同时对算法参数具有相当的鲁棒性。