摘要
Scattering of oblique flexural-gravity waves by a submerged porous plate in a finite water depth is investigated under the assumptions of linearized surface waves and small-amplitude structural response. The study is carried out using eigenfunction expansions and the corresponding orthogonal mode-coupling relations associated with flexural-gravity waves in uniform water depth. The characteristics of the roots of the complex dispersion relation are examined using the principle of counting argument and contour plot. Characteristics of the flexural-gravity waves are studied by assuming both the floating elastic plate and the submerged porous plate are infinitely extended in horizontal directions. The effectiveness of the submerged porous structure on the reflection, transmission, and dissipation coefficients is analyzed for various wave and structural parameters.