摘要
在安全和隐私保护需求的驱动下,网络通信加密化已经成为不可阻挡的趋势。加密网络流量呈现爆炸增长,给流量审计与网络空间治理带来了挑战。尽管机器学习已解决了部分加密流量识别的问题,但仍存在无法自动提取特征等局限。深度学习可以自动提取更本质、更有效的特征,已被用于加密流量识别,并取得了高精度。基于深度学习的加密流量识别的相关研究工作,提出基于深度学习的加密流量识别的框架,并通过数据集、特征构造和模型架构回顾部分研究工作,分析基于深度学习的加密流量识别面临的挑战。
-
单位中国电子科技集团公司第三十研究所