摘要
以始锻温度、终锻温度、锻压比和前轴材质4个参数作为输入层函数,以耐磨损性能和疲劳性能作为输出层函数,采用4×16×8×2四层拓扑结构构建了前轴锻压工艺的神经网络优化模型,并进行了训练、预测和验证。结果表明,神经网络的耐磨损性能相对训练误差在3.2%~5.7%、疲劳性能相对训练误差在3.2%~5.5%;耐磨损性能的相对预测误差在2.6%~4.2%、平均相对预测误差为3.15%,疲劳性能的相对预测误差在2.6%~4.1%、平均相对预测误差为3.17%。
-
单位吉林农业科技学院; 吉林大学