摘要
针对传统数据驱动故障诊断方法难以从轴承信号中自适应提取有效特征、没有充分利用故障数据的时序特点以及缺乏自适应处理动态信息能力的问题,提出了一种深度卷积神经网络与长短期记忆网络相结合的智能故障诊断方法。本文方法构建的深度模型能够从轴承原始信号中自适应地提取鲁棒性特征,然后利用长短期记忆网络学习特征中的时间依赖关系实现了高准确度的轴承故障诊断。该方法克服了传统特征提取方法依赖专家经验和信息利用不完全等问题,实现了故障的智能、准确诊断。实验结果表明,该方法可以提取更准确的特征而且由于利用了故障演变过程中的时序信息,使得故障诊断更加智能、可靠。
- 单位