摘要

动车组运行故障动态图像检测系统TEDS在客运专线安装部署,为动车组安全运行提供保障。针对TEDS缺陷自动检测精度低的问题,提出基于卷积神经网络的TEDS缺陷检测与分割模型,采用特征金字塔网络提取缺陷的多尺度融合特征,采用可改变感受野的可变形卷积DCN适应缺陷形态的多样性。TEDS缺陷检测任务中缺陷数量远小于背景数量,采用在线困难样本挖掘OHEM筛选出困难样本,重新输入预测网络以平衡正负样本的比例。通过对几个动车段的TEDS图像数据进行试验分析,结果表明该模型的准确率、召回率优于传统方法。另外,迁移学习试验结果验证了模型的泛化能力,且该模型可以实现缺陷的精准分割。

  • 单位
    中国铁道科学研究院