摘要

针对无人机航拍场景下的实时目标检测任务,以YOLOv5为基础进行改进,给出了一种轻量化的目标检测网络YOLOv5-tiny.通过将原CSPDarknet53骨干网络替换为MobileNetv3,减小了网络模型的参数量,有效提高了检测速度,并进一步通过引入CBAM注意力模块和SiLU激活函数,改善了因网络简化后导致的检测精度下降问题.结合航拍任务数据集VisDrone的特性,优化了先验框尺寸,使用了Mosaic,高斯模糊等数据增强方法,进一步提高了检测效果.与YOLOv5-large网络相比,以降低17.4%的mAP为代价,换取148%的检测效率(FPS)提升,且与YOLOv5s相比,在检测效果略优的情况下,网络规模仅为其60%.

全文