摘要

随着互联网的广泛应用,图像数据越来越多,如何从海量图像中快速检索出感兴趣的图像成为难题。文中提出一种基于Hadoop的图像检索方法,首先提取图像SURF特征点,经K-Means聚类、PCA降维后得到图像的特征矩阵,再使用局部敏感哈希算法(LSH)得到固定长度的哈希码,并使用HBases存储图像和哈希值,检索时使用欧式距离进行相似度计算。在MirFlickr数据集进行了图像检索实验,结果表明,文中的方法可以大幅提高图像检索效率,可以满足海量图像检索的需要。

全文