摘要

行人检测在视频监控等应用领域具有重要价值。在应用场景复杂、响应速度快的视频监控应用领域,如何提高行人检测的准确率和检测速度是计算机视觉研究者们研究热点之一。深度学习在计算机视觉领域不断创造佳绩,使得深度卷积神经网络在智能监控的通用目标检测中被广泛使用。论文主要介绍一种基于卷积神经网络的行人检测实现方法。该方法以Tensor flow作为训练框架,以Yolo v3作为神经网络算法,使用VOC2007数据集对模型进行训练实现图片的行人检测。试验证明,该方法训练的行人检测模型无论在检测准确度和检测速度,还是模型适用场景,比传统模式的行人检测都有着绝对的优势。

  • 单位
    南阳理工学院