摘要
社交网络谣言是严重危害社会安全的一个重要问题.目前的谣言检测方法基本上都依赖用户评论数据.为了获取可供模型训练的足量评论数据,需要任由谣言在社交平台上传播一段时间,这就扩大了谣言的危害.本文提出了一种基于知识图谱表示学习的谣言检测方法.该方法不依赖用户评论数据.首先基于PN-KG2REC算法得到实体和关系的表示;然后将待检测三元组中的实体和关系表示进行拼接,得到三元组表示;最后对三元组的向量表示进行分类,并根据分类结果判断待检测三元组描述内容的真假性.采用公开数据的实验结果表明,本文提出的谣言检测方法在不依赖用户评论数据的前提下,能够有效地对谣言进行早期检测.
- 单位