摘要

针对靶基因样本数据不平衡导致阳性样本预测准确率较低的问题,提出基于SVM的靶基因预测算法,即偏置判别SVM。算法选取高质量的数据集和最优特征集作为输入,在经验特征空间中以偏置判别分析准则为核优化目标函数,使用核保角变换的方法逐步优化核矩阵,用最优核矩阵构造偏置判别SVM,以解决靶基因数据不平衡对预测造成的影响。对比实验分析表明,提出的偏置判别SVM算法具有更高的特异度、敏感度和预测精度。同时,偏置判别SVM具有更强的泛化能力,鲁棒性更好。