摘要

针对恶意逃避样本的逃避行为进行分析,归纳并总结了恶意逃避样本常用的逃避API函数集,提出了一种基于动态API调用序列和机器学习的恶意逃避样本检测方法。在特征工程处理阶段,提出了逃避API函数权重衡量算法,并通过优化词频处理来增强逃避API函数的特征向量值,最终本文方法检测恶意逃避样本的准确率可达95.09%。