摘要
在基于深度学习的属性抽取研究中,注意力机制是常用的模型之一.目前,面向属性抽取的注意力机制存在2个局限性:其一,注意力机制多为自注意力机制,这是一种全局式注意力机制,其将不相关的噪音(距离目标词较远且与之不相关的词)带入注意力向量的计算;其二,目前的注意力机制多为单层注意力机制,注意力一次建模后缺少交互性.针对这2个局限性,提出一种面向属性抽取的类卷积交互式注意力机制.该方法先将目标句输入到双向循环神经网络,借以获得每个词的隐式表达,再经过类卷积交互式注意力机制进行表示学习.类卷积交互式注意力机制分为2层注意力计算:第1层按序(从句首到句末)通过滑动窗口控制每个词的上下文宽度,并计算每个词的注意力分布向量;第2层将第1层的注意力分布向量与所有单词进行交互注意力计算,将得到的注意力向量与第1层的注意力向量拼接,最终输入到条件随机场进行属性标记.在2014—2016语义评估(semantic evaluation, SemEval)官方数据集上验证了模型的有效性.相比于基线模型,在4个数据集上的F1值分别提高了2.21,1.35,2.22,2.21个百分点.
- 单位