基于SOM-MQE模型的设备故障预警方法

作者:韩宝宏; 闫明胜; 段鹏飞; 李志; 张羽; 朱慧敏*
来源:工业技术创新, 2021, 08(01): 74-78.
DOI:10.14103/j.issn.2095-8412.2021.01.012

摘要

借助机器学习算法进行设备故障预警是保证设备安全可靠运行的有效手段,但故障数据样本难以获取,成为相关设备推广应用的一大挑战。构建一种结合自组织映射网络(SOM)和最小量化误差(MQE)的SOM-MQE模型,提出基于SOM-MQE模型的设备故障预警方法。首先,划分训练集和测试集,用训练集的设备正常状态数据训练SOM模型;然后,将实时数据与SOM所有图元中的权值矢量作比较,根据MQE值确定设备的故障预警区间,从而判断设备是否需要故障预警。采用某航空发动机的全生命周期数据进行实验验证,表明SOM-MQE模型在进行发动机故障预警时能达到74.81%的准确率,满足在缺少明确故障标签数据的条件下设备故障预警准确率不低于70%的行业要求。SOM-MQE模型易于构建,检测速度快,适用于大多数实际工业场景。