摘要
混沌系统在电路、保密通讯、加密解密等方面具有重要的研究意义.由于其对初值非常敏感,传统的统计学时间序列预测方法在处理混沌时间序列预测问题是具有挑战的.回声状态网络是一种特殊的循环神经网络,在复杂动态系统动力学与控制方面具有优势.经典的回声状态网络将每个样本置于同一地位,然而实际问题中不同的样本的重要性往往是有差异的.本文提出注意力机制回声状态神经网络模型,将回声状态网络与注意力机制相结合体现样本之间的差异性以及样本之间的相互作用对预测的影响.对混沌系统的预测结果表明注意力机制回声状态神经网络具有更好的预测性能.
- 单位